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The problem of internal waves, excited by a point source in a three-layer, initially unperturbed, atmosphere is investigated in a 
linear formulation. It is assumed that the vertical displacements and the velocities of the particles change continuously at the 
boundaries of the layers and that the Brunt-Vais& frequency is constant in each layer but suffers discontinuities at the boundaries 
of the layers. The solution, found using integral transforms, is expressed in terms of double integrals of multiple-valued analytic 
functions. The integral representation for the perturbations in the middle layer does not enable asymptotic methods to be used 
directly to obtain an approximate description of the behaviour of the solution at long times. It is transformed into finite sums 
of single-valued integrals which, in a certain sense, represent the various modes of oscillation which arise. Modes making the 
major contribution to the perturbation are investigated by the stationary phase method. Particular surfaces are found in the 
neighbourhood of which the amplitudes of the oscillations decay weakly with time. A problem on perturbations from a source 
in a two-layer atmosphere was investigated earlier in [l]. A study of the case of a three-layer atmosphere is of interest since the 
middle layer acts as a waveguide. 0 2002 Elsevier Science Ltd. All rights reserved. 

1. FORMULATION OF THE PROBLEM AND 
THE INTEGRAL REPRESENTATION OF THE SOLUTION 

An ideal atmosphere which fills a three-dimensional space is considered. This atmosphere is subdivided 
into three layers with constant, but different, Brunt-Vaisala frequencies. The Brunt-RiGi frequencies 
are Ni, N2 and Ns in the lower, middle and upper layers respectively. The width of the middle layer 
was chosen as the unit of length and l/N2 as the unit of time. It is assumed that Ni/Nz = a < 1 and 
N3lN2 = a’ < 1. The origin of the Cartesian system of coordinates, xyz, is chosen to be on the lower 
boundary of the middle layer and the z axis is directed opposite to the gravity force. The source is located 
in the lower layer at the point (0, 0, - c). The power of the source Q(f) is a continuously differentiable 
function and Q(0) = Q’(0) = 0. The vertical deviation W of the fluid particles from the equilibrium 
position is expressed in terms of the derivative &V/&T, where the function w(x, y, z, t) is the solution of 
the following problem 

a2 
a12( Aw)+A,w=O. O<z<l 

a2 

z( 
Q’W Aw)+a2A2w =- 411: 6(x)6(y)6(z + cl, - = < z c 0 (1.1) 

$(Aw)+o”A~w = 0, l<zc+oo 

The function w and its first-order partial derivatives are bounded and change continuously on crossing 
the boundaries of the layers. The initial conditions are null conditions. 

Applying a Laplace transformation with respect to the variable t with null initial conditions and a 
Hankel transformation with respect to r, we will seek a solution of problem (1.1) in the form 

where IQ is the Laplace transform of the function Q. 
For determining the function cp, we obtain the equations 

tPrik1. Mat. Mekh. Vol. 66, No. 1, pp. 62-68,2002. 

59 



60 A. M. Ter-Krikorov 

d*tp ~-w+o, O<z<l, o=f 
dz 

(1.3) 

Any solution of the second of Eqs (1.3), which is bounded when .z > 1, satisfies the conditions 
cp’(z)+p(z) = 0. Any solution of the third equation of (1.3), which is bounded when z < 0, has the 
form cp = -(u/2@ -“lz+cl + CeG and, when z > -c, satisfies the condition g’(z) - yq = ue-y(z+c). 

Since the function q’(z) is continuous at the points z = 0 and z = 1, in order to determine the function 
g(z) in the interval [0, 11, it is necessary to solve the boundary-value problem 

d*cp(z) 
- - 02(p(Z) = 0 

dz* 

dW9 4(l) --yp(O)=14e-~', ~+&3(1)=0 
dz 

The solution of this boundary-value problem has the form 

Cp (u, p, z) = -ue+ 
(0 + p)ew(‘-z) + (0 _ fj)e-w(l-Z) 

Cw + P> (0 + Yk” - (0 - p) (CO - y)e-” 

The solution of problem (1.1) is obtained by substituting the function cp(u,p, z) into formula (1.2). 
The case when a’ = a, and consequently p = y, is investigated later, namely 

cp(u,p,z) = -ue 
_pc (CO + p)eW+z) + (0 - p)~-wtl-z) 

(O+j3)*e” -(CO-_p>*e-” (1.4) 

2. TRANSFORMATION OF THE FORMULA GIVING THE SOLUTION 

Since the function cp(u, p, z), which is defined by equality (1.4), does not change its form when w is 
replaced by -0, the pointsp = -+i are not branching points of this function. In the case of the function 
cp(u,p, z), the two branching points arep = &ai. We join these points by a cut along the imaginary axis 
and we will show that the poles of the integrand lie in the sections t [ai, i]. These poles must be zeros 
of the equation ezO = (w-B)*/(w + p)2. Ifp is a zero of this equation, then it also follows from formula 
(1.3) that -p andp are also zeros of this equation. It is therefore sufficient to consider the case when ,- ---~~~ 
the pointp lies in the first quadrant. In this case, 0 < arg \‘l + p2 < argp < 7c/2 and, consequently, the 
point w lies in the fourth quadrant. Similarly, the point B lies in the fourth quadrant. But then 
(w - p]/]o + p] < 1, e”] > 1, and the equality ]eO] = 10 - S]/]w + PI cannot be satisfied. So, the 
poles of the integrand can only lie on the imaginary axis. Moreover, they are symmetrically disposed 
about the origin of coordinates. These poles are the zeros of the equations 

ctho=-o/p, the=-o/p (2.1) 

When p = iq, q > 1, the numbers o and p are positive and Eqs (2.1) only have a null solution. It is 
seen from formulae (1.3) and (1.4) that zero is not a pole of the integrand. If -a < q c a, then w and 
B are pure imaginary and Eqs (2.1) do not have solutions. If, however, u < q < 1, then o will be an 
imaginary number and p will be a real number, and Eqs (2.1) have solutions. 

Using Cauchy’s theorem, we transform formulae (1.2) to the form 

w = w, + w* + ws (2.2) 

wk = & 7 f Jo(ru)LQ(p)eP’cp(u, p, z):du 
0 ck 
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where the contour Cr is the double section [-ai, ai], the circle C, contains inside it all the zeros of 
Eqs (2.1) lying in the section [ai, i] and the circle Cs is symmetrical with C, about the real axis and contains 
the zeros of Eqs (2.1) lying in the section [-i, -ai]. The number p takes complex-conjugate values at 
points of the circles which are symmetrical about the real axis. It follows from formulae (1.3) and (1.4) 
that cp(u,p, z) = cp(u,p, z). Noting that, when the pointp moves around the circle C, in a positive direction, 
the conjugate point p moves around the circle C3 in the opposite direction, we obtain from formula (2.2) 

Introducing the new variables 

p=iq, x- -IfJ1-qz, b2=1-a2, +m 
4 

we can represent expression (2.3) in the form 

ia’vx -oCJv2-x2 xcosxz+a 
@2(2,x, u) =-e 

8X2 E2(x, u) 

(2.3) 

Graphs of the functions -atg(x/2) and x/\~S_ actg(x/2) show that, for each fixed v, the functions 
vl and w2 have a finite number of zeros +xk(v) (k = 0, . . ., W(v) + 1) and, moreover, the zeros of 
these functions alternate, being increasing functions of the parameter v. Suppose \~i(x2k+i(v), v) = 0 
and WZ(.U(V, u) = 0. The functionsxZk(v) are defined in the interval 27rk c v < + = and 2nk c xZk(v) 

c (UC + 1)~. The functionsxZk+i(v) are defined in the interval (UC + 1)rt < v c + m and (UC + 1)~ < 
x2/c+dv) < w + 2)7c. 

On replacing the inner integrals in formula (2.5) by the sum of the residues, we obtain 

2k+,(U).r,Z,f)x;k+,(U)dU + 

+ Re c j F2(x2k(u),r,~,r)x;k(u)du 
k=O 0 

where 

4(X,r,z70= Jo( b,rn:Jx/:)I) LQ(iA( )) p x ex (i 

F2(x,r,.z,t)= Jo(b,~s7~~2),) LQCiB(xjjexp(irBtx)-cxltg$sintcosx(z--!) 

A(x) = J I-(I-a’)sin*t, B(x)= I-(I-a2)cos2~ 

(2.6) 

and the variable v is related to the variable x by formulae (2.4). 
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Whenever the functions x,(u) are undefined, we continue them with a zero. If the monotonicity of 
the functions xn(u) is used and the variable of integration x = x,(u) is replaced in each of the integrals 
of formula (2.6), then formula (2.6) can be written in the form 

w2 + w3 = Re --&~F,(x+2t7c.r.z.t)dr + Re~j4(x+(2k+I)x.r.z,r)dr 
0 0 

Using expressions (2.6), formula (2.7) can be written in the form 

(2.7) 

y(X,r,z) = C e-crrk’g(n’2) 
k=O 

Cos(x(z-~)+hz)JO( ;;$yg;) 
(2.8) 

(2.9) 

When x = 0, we obtain, using well-known identities [2] 

Y(0, r,z) = jJ Jo !-+i $ G(r,21-2). 
2 n /=m+l 

if bz> r 
t=o 

Y(O.r..z)=++~l~ (C(r,21+2)+G(r,21-z)), if 

C(r+fz)= 
b 

Ja2r2 - b2(21k z2) 

where the integer part of the number x is denoted by [xl. 
We will investigate the behaviour of integral (2.8) for large values oft. The phase B(x) has a stationary 

point at the ends of the interval of integration. The contribution from the point x = rt decreases more 
rapidly than any negative power oft and the contribution from the point x = 0 is equal to 

wI + w2 = Re 
aLQ(ia)Y(O, r, z)e”” 

I 28rc2b2t 
(2.10) 

For fixed values of r and z, the function w1 + wz decreases as e”“/t. It follows from formulae (2.9) 
and (2.10) that, in the neighbourhood of particular surfaces (cones) a2r2 - b2(U+z)2 = 0, the function 
Y(0, r, z) becomes unbounded and, consequently, close to these surfaces the oscillations will slowly decay. 

We will investigate the behaviour of the term w1 in formula (2.2). Making the change of variables 

4 -q2 
p=qi40, o(qifO,u)=-i6l,, WI =u- 

4 

p(qi+O,u)=Wf3,, PI =u 
Jm 

4 

we transform the expression for w1 to the form 

w, =-3 4b 1% Jo(ru)Re(LQ(iq)ei9’)ReF(w~,&,z)~dq (2.11) 

01 -P, p - (2-Z) +w,-&-&e’ ‘= a’ )rp(m, +i3, jl+-+?-‘ll)l))l 
Putting 
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u 

dw, + P, ) 
= ;sw 

we rewrite formula (2.11) in the form 

4k+’ Re(LQ(iq)e@) x 

+- 
x Re j J,(ru e iP,c-io,(z+Zk) +s e 2 

0 

Evaluating the inner integrals, we obtain 

w, = -j&k;0 [ ’ 4k+’ Re(LQtiq)eiq’) (o(r, z + 2k) + s20(r, 2 - z + 2k))dq 

After replacing the variable of integration 

9(x)=/S, s(q)=E 

formula (2.12) reduces to the form 

Re(LQ(iq(x))ei4”“) x 

x O(q(x), r, z + 2k) + s’o(q(x), r,2 - z + 2k) dx 

JXF 

where the function @q(x), r, z) is non-zero only if 

z.CaL(r), max(0,x,)SxSx2 
b 

Xl,2 = 

b2cz T I,/- 
L2(r) ’ 

L(r) = &7X7 

In this case, the equality 

O(q(x), r. z) = 
&X7 L(r)& - I;, )(x2 - X) 

holds. 
Putting 

bz . cb r 
-=smcp, ~(r)=cosW, 
qL(r) 

- = sin w 
L(r) 

(2.12) 

(2.13) 

(2.14) 

we obtainx1,2 = a sin(cp + w). 
When z < m/b, both roots are real and xi S 0 S x2 s a. When ar 6 z c aL(r)/b, the roots are real 

and 0 c x1 c x2 c a and, when z = aL(r)/b, the roots are identical: x1 = x2 = ubc/l(r). We further note 
that the root x2 = a in the plane z = cu. 
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Suppose N(r, z) is the largest number for which the inequality z + 2k c arlb holds and M(r, z) is the 
largest number for which the inequality arlb < z + 2k < aL(r)/b holds. Equality (2.13) can be rewritten 
in the form 

M(r.2) 2 &n(rsz+2~) 
w,=-ReC 2 ] C, (x, r, z + 2k)eigCx”cfx 

r=o m=l 0 J(x-x,(r,z+2k))(x2(r,z+2k)-x) - 
M(r,2-z) 2 x,(r,2-z+2k) 

-ReCC j 
G2(x, r,2 -.z + 2k)eig’x”dr 

k=O m=l 0 ,/(x-x,(1-,2-z+2k))(x2(r,2-z+2k)-x) 

G, (x, r, z) = 
b x(l -.x)2k-’ L 

4x3<= (I + X)2k+2 

G, (x9 r, 2) = 

We will find the contributions to the asymptotic expansion of the integral from the pointsxi andx2 [3] 

( 

M(r.2) M(r.2) 
wI =Re C (-H,,(r,z+2k))+ C H,,(r,z+2k) + 

k=O k=N(r.z)+l 1 

M(r,Z-2) 

+ Re 
( 

kso (-H,,(r,2-z+2k))+ M’$-z) H,,(r,2-z+2k) 
k=N(r,2-z)+l 1 

(2.15) 

Hjj(r. z) = 
G;(xj(~,Z),r,Z)eXp(ifq(xj(~,Z)+(-l)jn:/4)) 

xr19’(xj(‘,Z))l(X2(‘,Z)-xl(r,Z)) 

It is seen from formula (2.15) that, for long times, the perturbations decay as l/v t. Formula (2.15) 
becomes inexact when the rootsx2 andxl are close, that is, 

x2 =x, = bcal L(r) 

z+2k=aL(r)lb or 2-z+2k=aL(r)lb 

In this case, the integrals 

,, = i’ G,(.G r,z)e ‘Q’X”& 

x, J(x-Mx, -xl 

, k=1,2 

make the main contribution. 
Using the standard technique [3], we obtain 

(2.16) 

x2 e iq’(xl )(x-xl )I 
I, = G, (xl, r, z)e’9(r’ )’ j 

Li!x 

x, Jo -x,)(x2 -x) = 

= Gk(xl,rvZk ir(9txl )+K9’(X1 )fx2 -xI ))J~(~‘(~, )cx2 _ x,)f) (2.17) 

The surfaces on which x2 = x1 are defined by equalities (2.16). It can be seen that these surfaces are 
hyperboloids of revolution. It follows from equality (2.17) that, close to these surfaces, the perturbations 
slowly decay. This fact can also be an obstacle for the propagation of radiowaves in the middle layer. 

1. 

2. 

3. 
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